Model TF Zirconia Type O₂ Analyzer

Model DTF-101 Receiver

Instruction Manual

(KX - 621034)

The person who operates the product must read through this instruction manual.

1. For safe use of product

For safe use of the product, warning labels are provided on the instrument to increase caution, and cautionary messages are described in the instruction manual by the following method. After understanding the message content, use the product safely.

1-1 Cautionary message

85 or 132 VAC is applied to the power terminal block.

Q Since an electric shock may occur during check of wiring, turn off the external main power supply.

1-2 Warning

* Even if the power switch at the bottom right of this equipment is turned off, the source power is supplied to the terminal block. P CAUTION

• Be sure to turn the external power supply off when working.

Touching power supply terminal block, switches and other electric WARNING Q devices may result in electric shock. **ELECTRIC** Q

· Be sure to turn the power off when inspecting. Handling with wet hands will cause danger.

The notice terms mean the following:

SHOCK

WARNING It is a latent danger. Unless it is avoided, it may cause a death or serious injuries.

CAUTION It is a latent danger. Unless it is avoided, it may cause light or medium damage.

It is also used as a warning for an operation which is not safe.

2. General items

2-1 Preface

"Model TF Zirconia Type O₂ Analyzer " is a unique oxygen analyzer emerged out of the state-of-art fine ceramics technology. Down-sizing, minimal power consumption were attained with the integration of zirconia sensor and the ceramic heater. This Instruction Manual described the installation, operation and inspection procedures of Model DTF-101 Receiver for Model TF Zirconia Type O₂ Analyzer. We hope that this unit is operated after reading this Operating Manual carefully prior to using it understanding the details of it thoroughly. Please be advised that this Instruction Manual contains the descriptions on multiple number of units of partially different specifications, therefore, there are some descriptions not applicable to your unit.

2-2 Product Warranty

(1) Term: Described in the final document.

Unless it is provided, the warranty term will last for one year after acceptance.

- (2) Conditions:
- In the assumption that the product is properly stored and installed till the test operation and adjustment after acceptance at the customer's site, the delivered product shall be replaced or repaired without charge if any trouble or abnormality attributed to the poor design, manufacture or material which our company is responsible for occurs though the product is properly used during the above warranty term. Here, the proper operation method is as follows:
- ① The operational conditions and installation conditions described in the specifications and instruction manual shall be satisfied.
- ② Any excessive mechanical shock or vibration shall not be applied to the probe transmitter.
- 3 Calibration of the analyzer and replacement of the consumable parts shall be periodically carried out.
- The operational state of the analyzer shall be checked and maintained.(Note) The consumable and similar parts shall be outside the warranty range.
- (3) Application: The warranty shall be limited only to those article delivered by us.

 Warranty shall not be applicable to the losses incurred following to the failure of our delivered articles(the losses or lost profits and others incurred out of the controls or records by using the articles delivered from us, the losses or lost profit and others of the equipment on which the articles delivered from us are installed).

2-3 Contents

1.	For s	afe use of product	1
	1-1	Cautionary message	1
	1-2	Warning	1
2.	Gene	eral items	2
	2-1	Preface	2
	2-2	Product Warranty	2
2-3	Cor	ntents	3
	2-4	Cautionary points as to operation	4
	2-5	Outline of product	4
	2-6	Names and functions of components	8
	2-7	Temporary storage of product	11
3.	Insta	llation	12
	3-1	Installation conditions	12
	3-2	Installation method	12
	3-3	Wiring method	12
	3-4	Inspection after installation	15
4.	Func	tion list of receiver	17
5.	Oper	ation	19
	5-1	Start-up Operation	19
	5-2	Stopping Operation	19
	5-3	Key Operation Method	20
	5-4	User key input value (Set by we according to specifications in delivered product)	40
	5-5	System key input value (Set by we according to specifications in delivered product)	41
	5-6	Gas calibration method	44
	5-7	Purging method	48
6.	Main	tenance	50
	6-1	Daily/ periodic inspection	50
	6-2	Troubleshooting	51
	6-3	Display of setting error	53
	6-4	Error display	54
	6-5	DTF – 101 Malfunction Displays and Operations	56

2-4 Cautionary points as to operation

Use "Model DTF-101 Receiver" for Model TF Zirconia Type O₂ Analyzer in the following environments.

- · Area not exposed to the direct sunlight as much as possible
- Area with a surrounding temperature of -10 to 50°C with minimal variation of temperature (+/-10°C or less/day)
- Area with minimal moisture and dust
- · Area with minimal mechanical vibration
- · Area with minimal electromagnetic influence
- · Area with minimal corrosive gases
- Any corrosive materials must not be present in the discharge gas or sampled gas.
- Keep in mind that an error may result in the measured oxygen concentration if any combustible gas is present in the discharge gas or sampled gas.

2-5 Outline of product

"Model DTF-101 Receiver" for Model TF Zirconia Type O₂ analyzer is a gas analyzer used to monitor and control the atmosphere in an oven by measuring oxygen in the gas discharged from the boiler, heating oven, etc..

The following excellent functions and performance are featured:

- Automatic calibration and automatic purge function setting are possible.
- Setting of the content is possible for input/output points.
- The function and abnormality content are displayed on the LCD and LED.
- The value of the sensor signal can be indicated.
- - O₂ (converted into the butane gas) measurement inside the reducing atmosphere can be made with zirconia 2 cell pump type O₂ meter.
- Low sensor power consumption(normally approx. 20W) with low running cost.
- Short warm-up time(approx. 3 min.) with good operability.
- Easier maintenance with a small size and light-weight.

Principle of Zirconia 2 cell Pump Type Oxygen Analyzer

- 1. Construction and functions (Refer to figure at right)
 - ①Heater: Sensing element is heated to approx. 800°C
 - ②Sensing Cell: (1) Set the oxygen concentration of reference oxygen chamber to approx. 100%
 - (2) Measure the oxygen concentration of gas detection chamber.

(Refer to the following for detailed theory of operation.)

- ③Pumping Cell: Set the oxygen concentration of gas detection chamber to 0%. (Refer to the following for detailed theory of operation.)
- (4) Gas Detection Chamber: Gather the exhaust gas through the gas diffusion holes.
- ⑤Reference Oxygen Chamber: The oxygen concentration is at approx.100% with the reference oxygen electrical Micro current.
- 2. Characteristics of the detection section when heated to a high temperature
 - ①An electromotive force (EMF) is generated with an induced oxygen ion conduction when gases of different oxygen concentration are placed between the electrodes.

(Oxygen Battery by Concentration Principle)

②By flowing an electrical current are transferred in the opposite direction to the electrical current.

(Oxygen Pumping Effect)

The sensing cell utilizes principles 1 and 2, while the pumping cell utilizes principle 2.

- 3. Principle of the sensing cell
 - ①A minute electrical current flow is applied between the electrodes of the sensing cell.

By flowing electrical current through the electrodes, oxygen in the gas detection chamber is transferred to the reference oxygen chamber and the oxygen concentration of reference oxygen chamber becomes approximately

100%.

not

NOTE:As the amount of oxygen transferred from gas detection chamber to the reference oxygen chamber is extremely small, the oxygen concentration in the gas detection chamber is

affected.

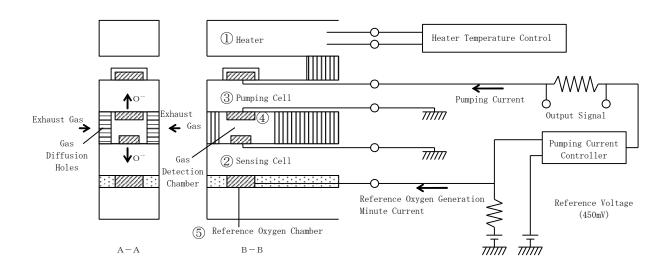
②An electromotive force determined by the equation shown below is generated between the electrodes of the sensing cell owing to the difference in oxygen concentrations between gas detection and reference oxygen chambers.

This electromotive force is measured in the sensing cell section and sends a signal to the pumping cell so that this electromotive force will become 350mV (oxygen concentration in the gas detection chamber is 0%).

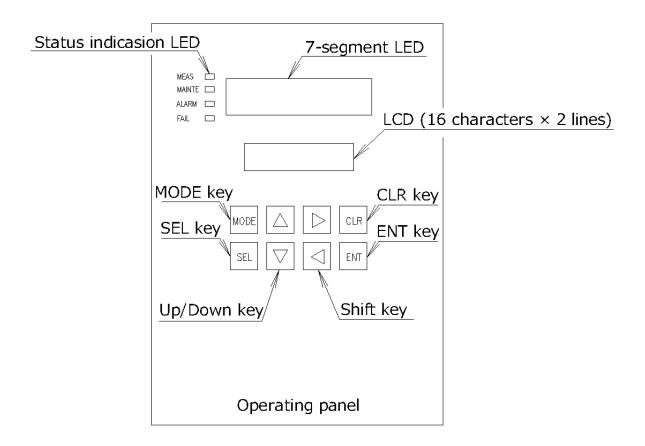
EMF = About
$$-$$
 53.2 \times Log₁₀ Oxygen Concentration in Gas Detection Chamber

Oxygen Concentration in Reference Oxygen Chamber (100)

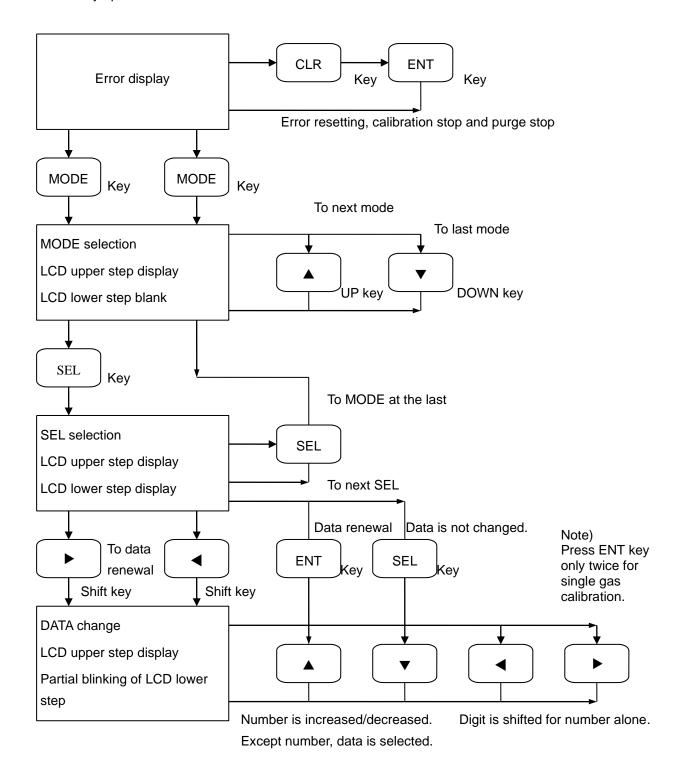

$$450 = -53.2 \times \log_{10} \frac{X}{100}$$

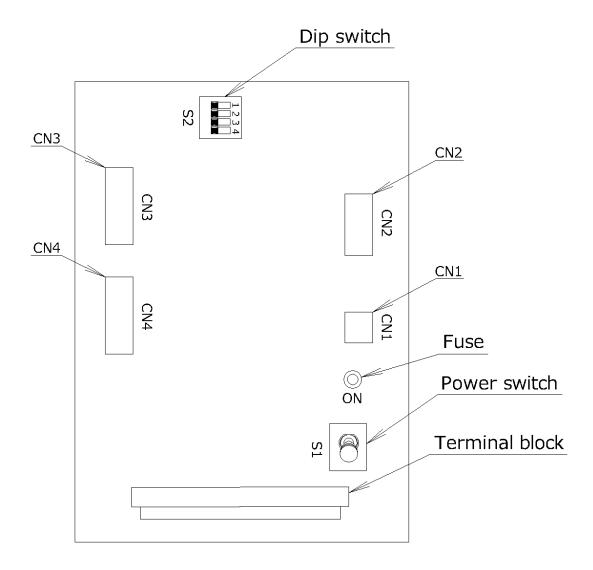

X = 0.00348ppm = 0%

4. Principle of the pumping cell


An electrical current is applied between the electrodes of the pumping cell so that the oxygen concentration of the gas detection chamber becomes 0% by receiving a signal from the sensing cell.

Because the oxygen concentration in the exhaust gas is proportional to the electrical current that flowed, the oxygen concentration in the exhaust gas can be measured by measuring the electrical current.


(3) Appearance of operation panel, and names and functions of components


Name	Function					
	Temperature rising time: The warm-up time is counted down.					
7-segment LED	Measurement time: Oxygen concentration is displayed.					
(Display unit 1)	Displayed content can be selected. (Refer to Page 22.)					
	Abnormal time: Error code is displayed. (Refer to Page 55.)					
16×2 characters LCD	Upper display : Mode is displayed. (Refer to Page 21.)					
(Display unit 2)	Lower display : Message is displayed. (Refer to Pages 21 through 40.)					
	MEAS: Lit for normal measurement.					
Status display LED	MAINTE: Lit for temperature rise, calibration, purging, holding, MFT input and data setting					
Status display LED	ALARM: Lit when the alarm results from the upper or lower limit of the oxygen concentration.					
	FAIL: Lit for occurrence of E-10 through E-20 errors					
MODE key	MODE selection: LCD upper step MODE display selection / ordinary display (RANGE)					
SEL key	SEL selection: LCD lower step display selection					
UP/DOWN key	MODE switch : Used to select MODE (except RANGE). MODE can be selected.					
OP/DOWN key	LCD lower step: Numeral data is increased/decreased. Other data except numeral data can be selected and changed.					
Shift key	Data change : Digits of numeral value displayed at the lower step of LCD is shifted.					
	Error reset: Error display is reset. ENT key returns it to the measurement mode.					
CLR key	Calibration stop: Calibration is stopped. ENT key returns it to the measurement mode.					
	Purge stop: Purging is stopped. ENT key returns it to the measurement mode.					
ENT key	Data renewal: Measured data is registered.					

Flow chart of key operation

The concept diagram of key operation is shown. For details of operation and setting content, refer to "5-2 Key operation method".

(4) Appearance of CPU board, and names and functions of components

Name	Function
Terminal block	External connection terminal block (Refer to p15.)
Power switch	Power switch for receiver Peven if the main power switch is turned off, the voltage is still supplied to the terminal block of the power supply.
Power fuse	Glass tube fuse (ϕ 5.2 $ imes$ 20mm $ imes$ 2A) JIS-MF-51NR 2A
Heater fuse	Glass tube fuse (ϕ 5.2 $ imes$ 20mm $ imes$ 5A) JIS-MF-51NR5A
Dip switch	Only used to check the function of receiver. P Don't turn on the switch. (Otherwise, the ordinary function of the receiver will turn off.)
CN1	Power connector
CN2	Transformer assembly connector
CN3	LED board connector
CN4	KEY board connector

2-7 Temporary storage of product

- ${\cal P}$ When temporarily storing the product, take care for the following:
 - It is desirable to protect the product with styrene or similar in the box for storage.
 - Store it at the place not directly exposed to sunlight.

 - Store it at the place with minimal moisture and dust.
 - Store it at the place not exposed to rain water.
 - Store it at the place with minimal mechanical vibration.
 - Store it at the place free of corrosive and dangerous gases.

3. Installation

3-1 Installation conditions

In order to safely and properly operate the product, take care of the following points when determining the installation place since the analyzer is a precise instrument. Select a place which satisfies the best possible conditions.

- Place with minimal vibration (0.1G or less)
- Place free of corrosive gases (SO₂, H₂S, etc.)
- · Place not exposed to radiation of hot heat.
- · Place with minimal influence of electromagnetic field
- Place with minimal moisture and dust
- · Voltage minimal fluctuations.
- Fluctuation of frequency of power supply is minimal.
- Place at the surrounding temperature of -10 to 50°C (not exposed to direct sunlight)

3-2 Installation method

Cautionary points as to installation

- Since the analyzer is a precise instrument, take care to prevent applying excessive shock or load during installation.
- ② Since it is easily damaged, take care not to hit the instrument during installation.

3-3 Wiring method

Connect the wiring at the terminal block. Route the cables through the wiring hole at the bottom of the case.

Moreover, apply a dust-tight and drip-proof seal to the wiring during installation.

(1) Terminal block

M4 screws are all used on the terminal block.

Q

Since an electric shock may occur during check of wiring at the terminal block, turn off the external main power supply.

Arrangement on the terminal block

IN1	IN	12	IN3		/S +	IP +		H +		S +	OU.	Т	RY1	R۱	/2	RY:	3 R	Y4	RY	5	POW -ER	PO	
COI	М	IN4	. 1	N5	VS		IP _		H	5		OUT	R	Y1	R۱	Y2	RY3	R	Y4	R'	Y5	E	

① POWER: Power terminal, supply power: 100 ±10V(115,200 VAC are optional)

Q

⑤ H +/H-

If any voltage above 110 VAC is applied to the power supply terminal block, it may cause trouble or a fire.

② COM-IN1 through 5 : Contact input terminal No-voltage contact max. 5 points

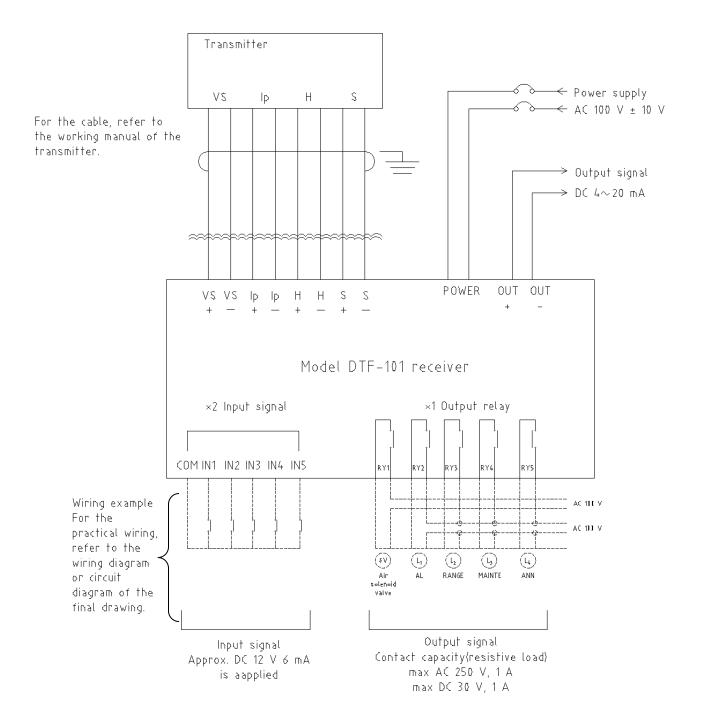
(Approx. 12 VDC, 6 mA is applied.)

③ VS +/VS- : Transmitter signal input sensing cell output voltage

④ IP+/IP- : Transmitter signal input pumping cell output current

: Transmitter signal input heater applied voltage 4- terminal

⑥ S+/S- : Transmitter signal input heater applied voltage ∫ wiring


OUT+/OUT- : Output signal DC 4 to 20mA(load 600 ohms max.)

(Contact capacity: AC 250V, 1A, DC 30V, 1A resistive load)

(ON: when power source OFF or in error)

Grounding requirements.)

(2) Wiring

- *1 The function of the output relay is input by we according to the specifications. (Refer to P43.)
- *2 The function with the input signals is input by we according to the specifications. (Refer to P44.)

3-4 Inspection after installation

Proper wiring from the transmitter of Model TF Zirconia type O₂ analyzer to the receiver of Model DTF-101 receiver. If power is supplied to the wrong wiring, it will cause a sensor breakage or other serious trouble.

In order to prevent trouble which results from wrong wiring, check the wiring by the following procedure with the air selected as the measured gas when turning on the power supply for the first time for test operation and adjustment.

After verifying that the power supply of the receiver is off, check the following.

(1) Heater wiring check (H+),(H-),(S+),(S-)

Check the followings after confirmed the receiver power is OFF.

- Resistance is measured at terminal block of the receiver between (H+), (H-) and between (S+),(S-). Standard value: Wiring cable resistance(1 ohm/100 meter for 2 sq.)
- Resistance is measured at terminal block of the receiver between (H+), (H-), and between (S+), (S-).

Standard Value: Wiring cable resistance (1 ohms/100 meter for 2 sq.)

(2) Signal Load Wiring Check(Vs+),(Vs-),(Ip+),(Ip-)

Turn the electrical power to ON by disconnecting the lead wires of (lp+),(lp-) at receiver terminal block. Warm-up of transmitter is complete in about 3 minutes, so the followings are measured at the lead wires disconnected at the receiver terminal board.

Q

Take sufficient care to prevent the disconnected line from being short-circuited or grounded.

The EMF between (Vs+) and (Vs-) is measured.

Standard value: 0 to 150mV (Approx. 50mV)

The EMF between (lp+) and (lp-) is measured.

Standard value: 0 to 100mV(Approx. omV)

(3) Heater polarity check

Followings are measured at terminal block of the receiver.

Voltage between (H-) and (H+) Standard value: 5 to 13V(approx. 10V)

Voltage between (S-) and (S+) Standard value: 5 to 13V(approx. 10V)

Potential of (H+) and (S+) must be the same.

Potential of (H-) and (H+) must be the same.

(4) Signal wiring polarity check

Turn the electrical power to OFF and connect the lead wires(Ip+) and (Ip-) disconnectin in paragraph(2) on the receiver side

Then turn the electrical power to ON and the followings are measured at transmitter side after elapsed 3 minutes.

Voltage between (Vs-) and (Vs+): Standard value: 100 to 600mV(approx. 450mV)

Voltage between (Ip-) and (Ip+): Standard value: 0.5 to 1.5V(approx. 1V)

(5) Maintenance inspections and wiring checks during the sensor replacements will be easier when the cable marking bands are attached on the transmitter and receiver cables at this time after completed the wiring checks.

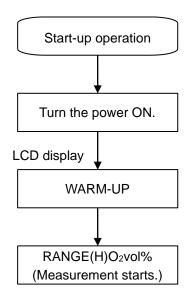
Note: The standard values indicated in paragraph(1) through(4) above are those when the sensor is at an initial condition. Because that value may change with the use, therefore, the wiring checks must be made using the sensor in an initial condition.

Check Sheet during initial installation(Refer to paragrapg (1) to (4) on the previous pages for details of the checks.)

	Check ite	ems	Standard value	Check 1 ()	Check 2 ()
	Heater + Heater	H+/H-	2.5- 9 Ω			
(4)	Wiring resistance	S+/S-	2.5- 9 Ω			
(1)	Heater wiring	H+/S+	5Ω or less			
	Resistance	H-/S-	5Ω or less			
(2)	Sensor signal	Vs-/Vs+	Approx. 50mV			
(2)	Serisor signal	lp-/lp+	Approx. 50mV			
		H+/H-	Approx. 10V			
(2)	Heater wiring	S+/S-	Approx. 10V			
(3)	Polarity	H+/H-	Approx. 10V			
		H-/H+	Approx. 10V			
(4)	Sensor signal	Vs-/Vs+	Approx. 450mV			
(4)	Wiring polarity	lp-/lp+	Approx. 1V			

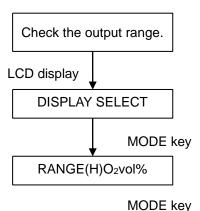
This column is reserved for a convenient use during checks.

4. Function list of receiver


Item	Description								
Automatic calibration function The solenoid valve is automatically opened and closed every preset time to apply the air, zero and span calibrations. Note 1) There are two methods: automatic calibration is started evidence time preset by the timer and at a desired time by key operation. Note 2) The calibration types of one-point calibration with the air at three-point calibration with air, zero and span can be selected.									
Primary delay calculation function	The primary delay calculation in the range of 0 through 60 seconds is possible. (63% response Here, 90% response conversion is multiplied 2.3 times.)								
O ₂ upper/lower limit alarm function	The alarm contact is output of O ₂ . Note) The alarm contact			nd lower limit	values				
	The output value can be held when the sensor is abnormal or during maintenance. PHM1 and PHM2 can be held at any set value within the range of 0 to 100%FS. Hold operation by setting								
	Status	STD	OFF	PHM1	PHM2				
Output holding function	Abnormal occurrence	Hold to	Hold to previous value 5 seconds	Hold to set value					
	During calibration Purging	previous	Not hold		Hold to				
	Hold input	value 5 seconds	Hold to		value				
	MFT input		value 5 seconds						
Self-diagnosis function	The abnormal places of detected with the self-dia contact are output.								
Monitor function	The O ₂ value, cell electron force and other data can b			le electromo	tive				
Output value check/adjustment function	The output value of 4 to 20 mA can be checked and adjusted wit key operation.								
Programmable range function	A desired value can be set for the SPAN point and ZERO point of the measured range. Note 1) Two kinds of the Hi/Lo ranges can be set. Note 2) The range of min. 5%O ₂ to max. 25%O ₂ is applied. The width of the range which does not include 0% is set at 10%O ₂ or more.								

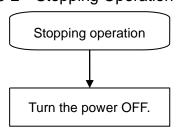
Remote range switch function	Two kinds of the ranges can be switched from the external by turning on and off the no-voltage contact input of the terminal.				
Remote calibration start function	The automatic calibration can be started by turning on the no-voltage contact input of the terminal.				
MFT signal input process function	The heater control of the detector is turned off by the main fuel trip (MFT) signal (the error is not output), and the purge relay is turned on. After MFT is reset, it is started at the temperature rise.				

5. Operation


5-1 Start-up Operation

The basic operation procedure for starting the oxygen analyzer is shown below.

① Turn the power ON.

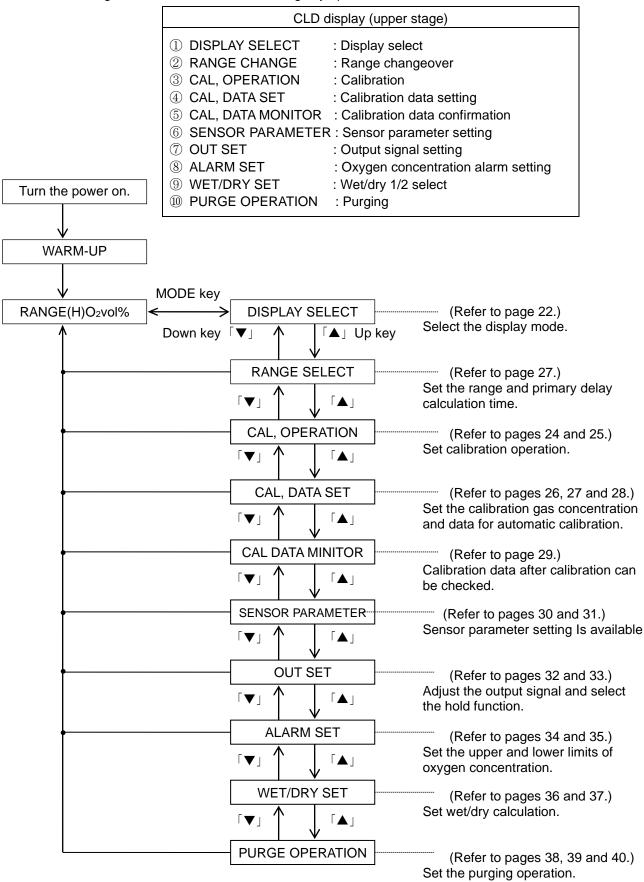

After the external power switch and the power switch inside the receiver are turned on, the receiver starts the count-down timer for warming the sensor (WARM-UP shown on LCD). After the set temperature has been reached, the measurement mode starts.

② Check the range (H/L) using the MODE key.

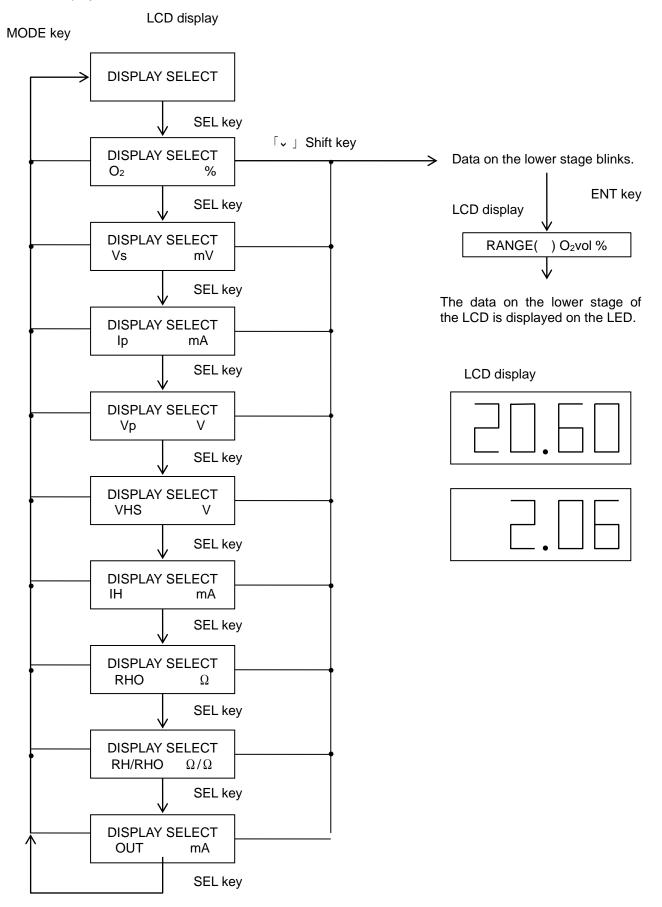
Operating the key on the receiver, check the output signal range. To change the range, refer to page 23.

5-2 Stopping Operation

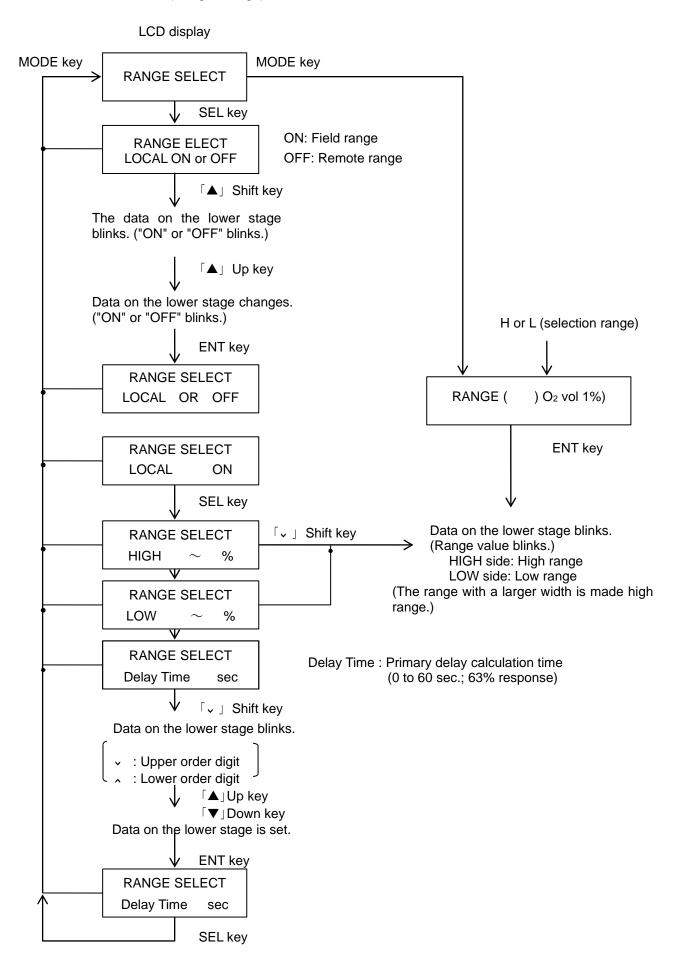
Before turning the receiver off, check that the inside of the transmitter and the sensor are in the air environment.

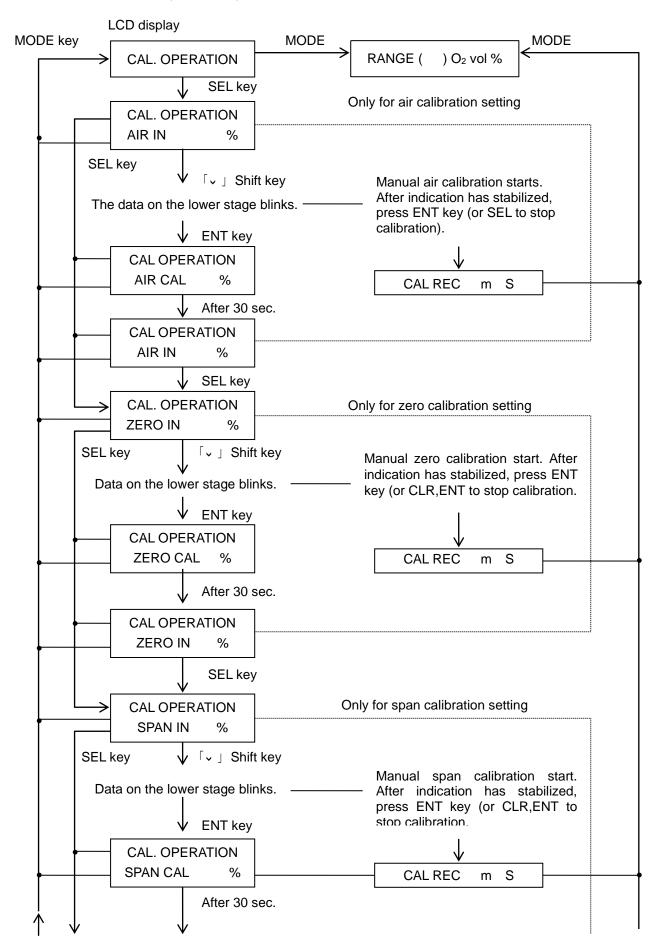

Otherwise sensor deterioration will result.

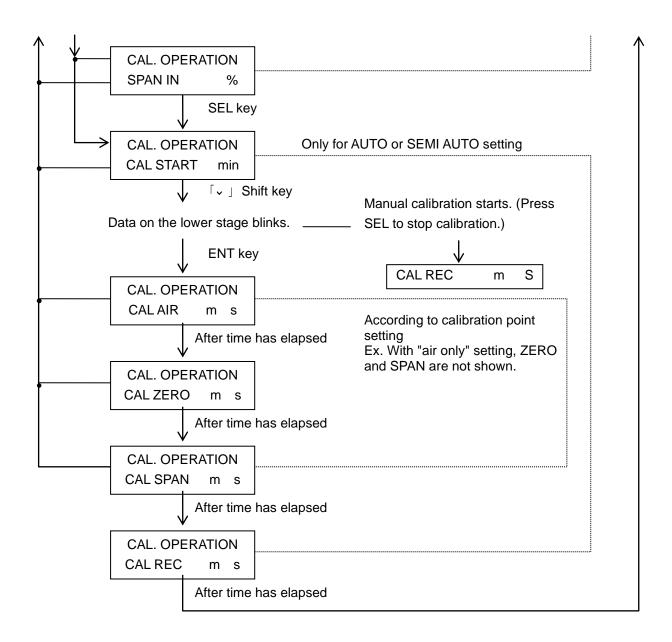
Turn the power switch of the receiver off.


When inspecting the terminals of the analyzer or receiver or performing maintenance work accompanying disconnection of wiring, turn the external power switch (source power switch) off.

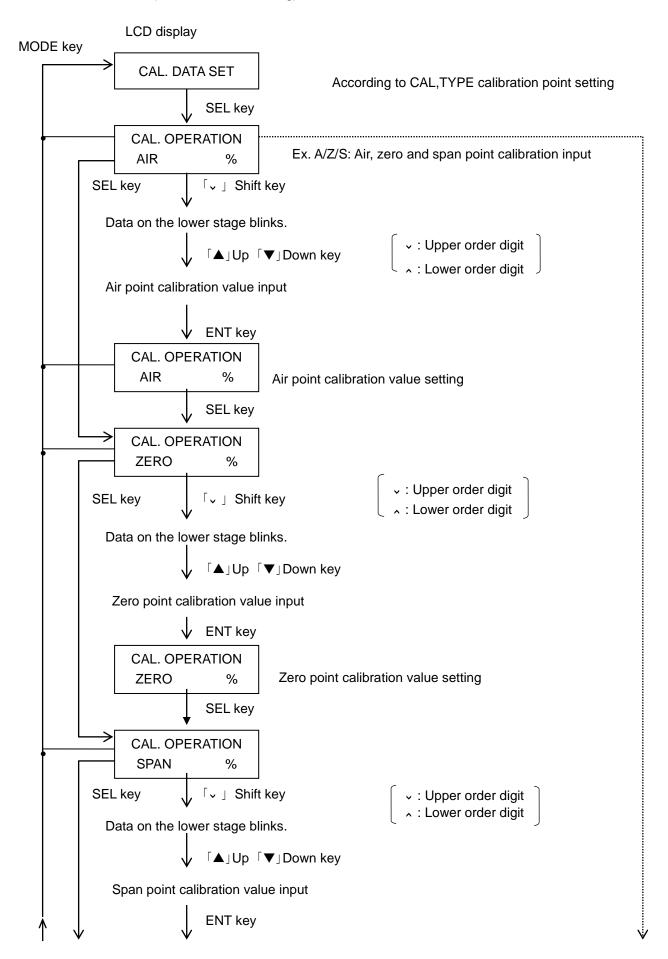
5-3 Key Operation Method

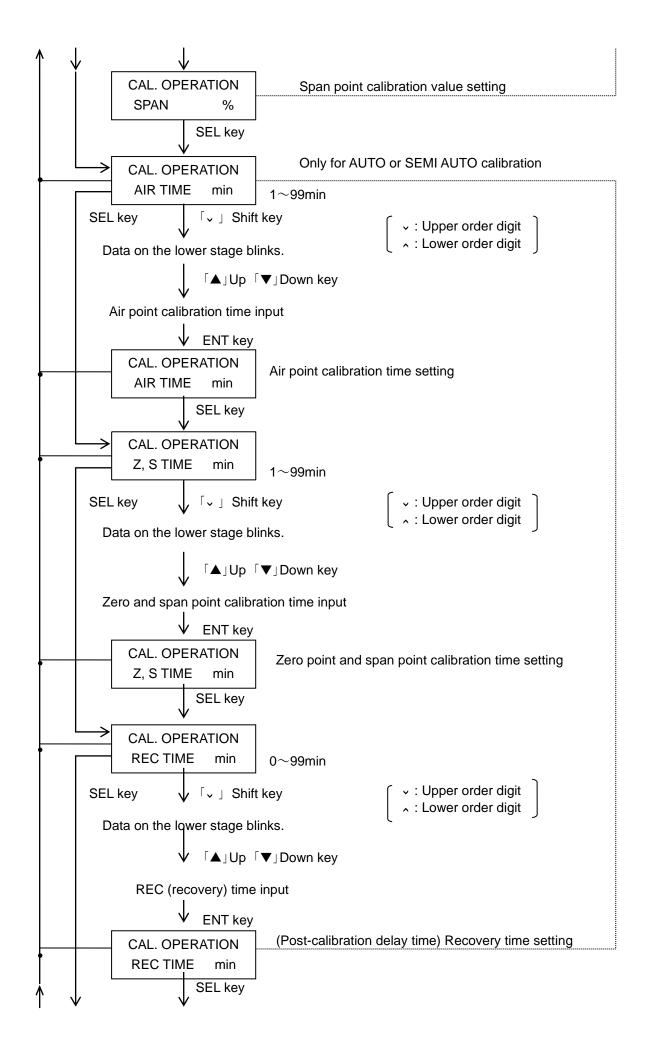

The following 10 functions are available using key operation.

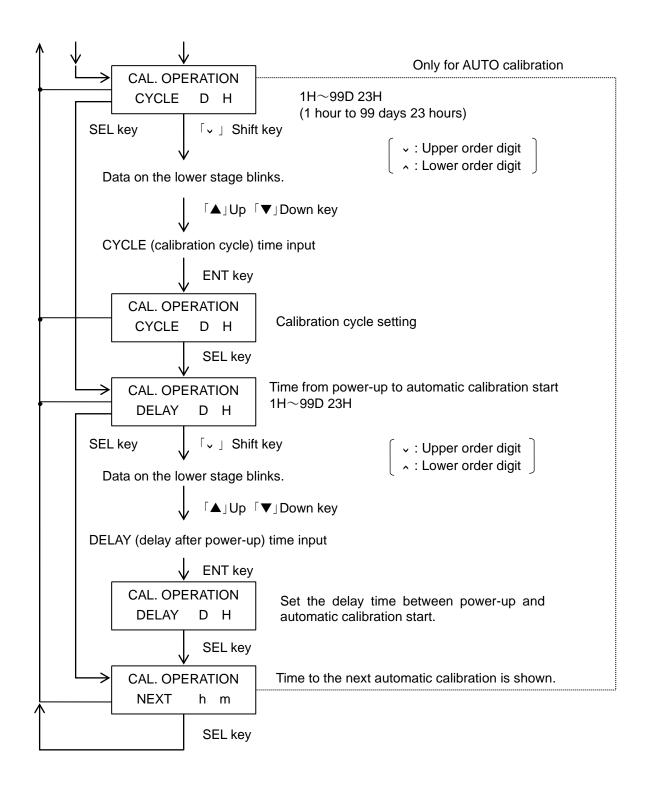

① Display select

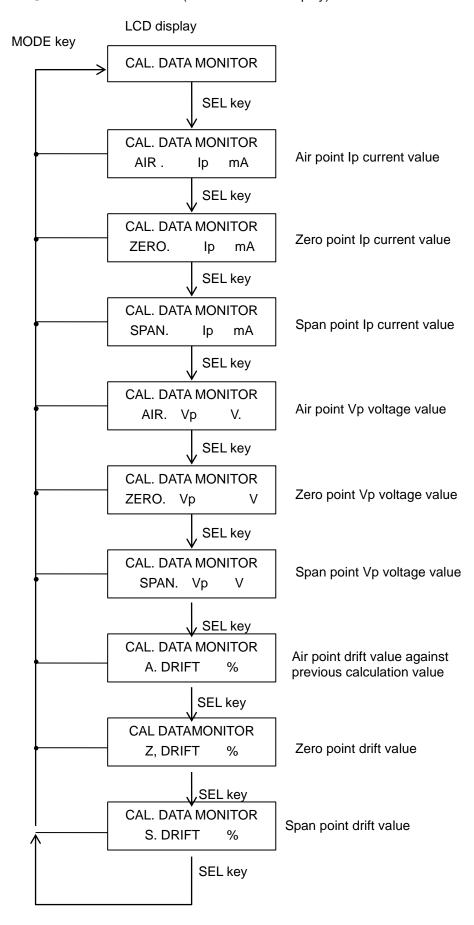


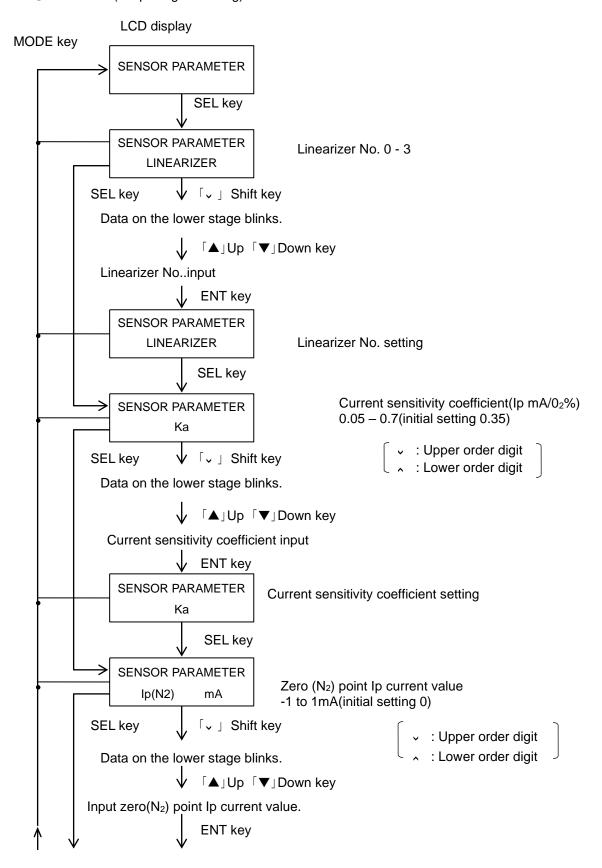
② RANGE CHANGE (Range change)

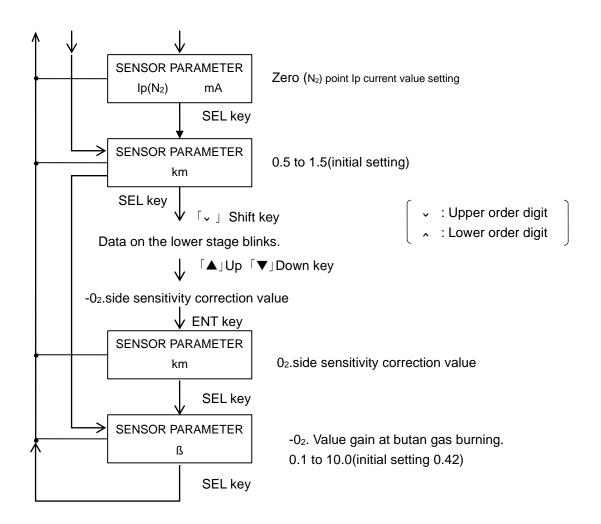



③ CAL. OPERATION (Calibration)

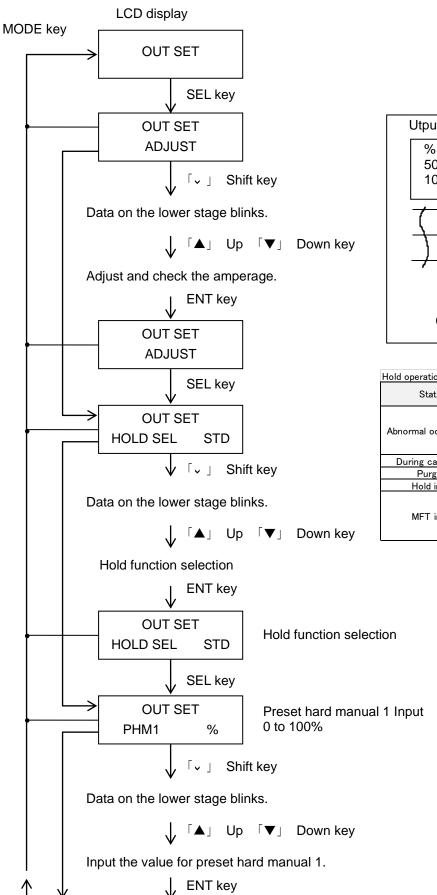


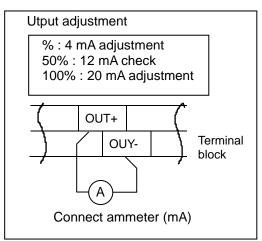

④ CAL DATA SET (Calibration data setting)

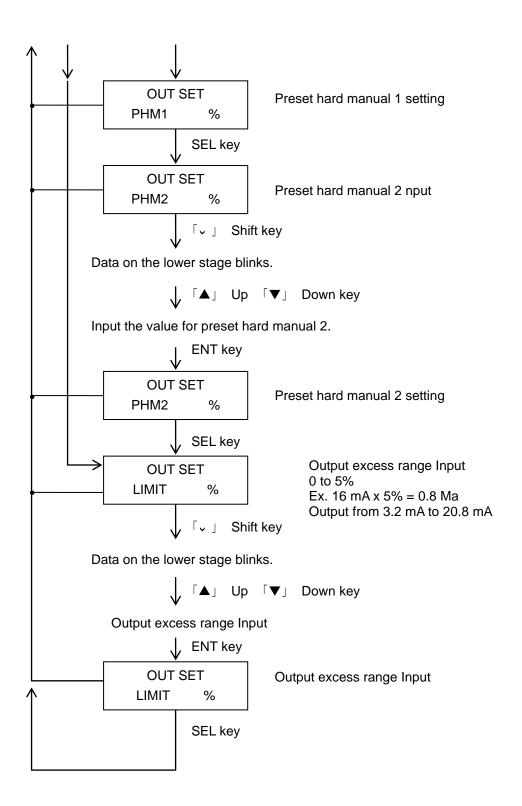




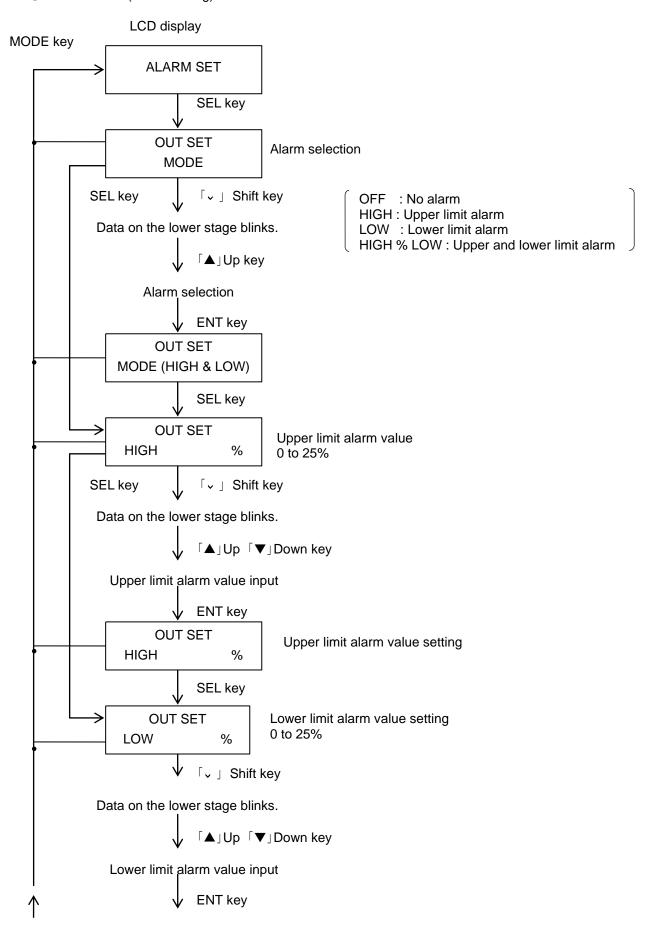
5 CAL DATA MONITOR (Calibration data display)

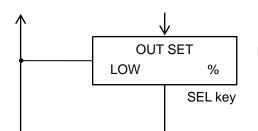



⑥ OUT SET (Output signal setting)

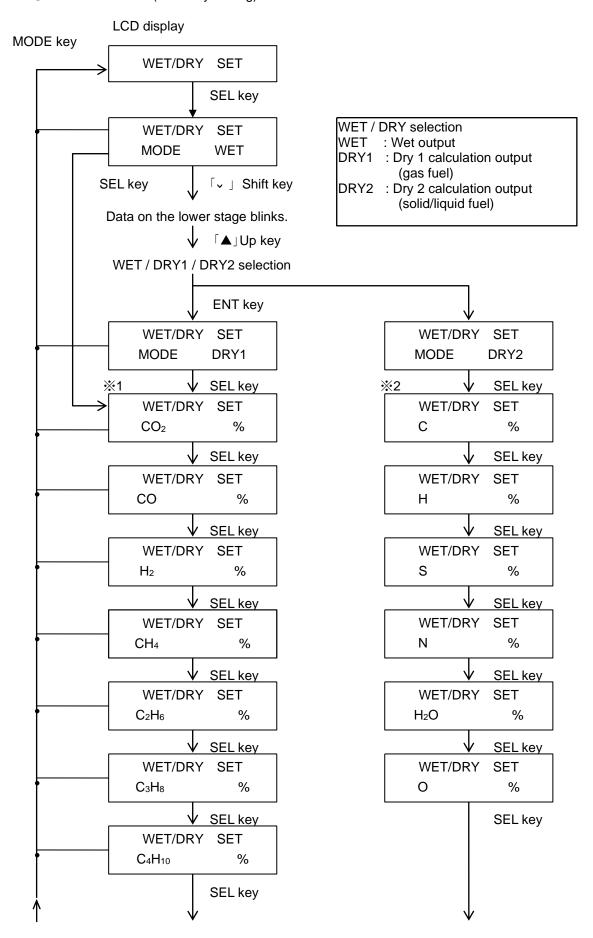


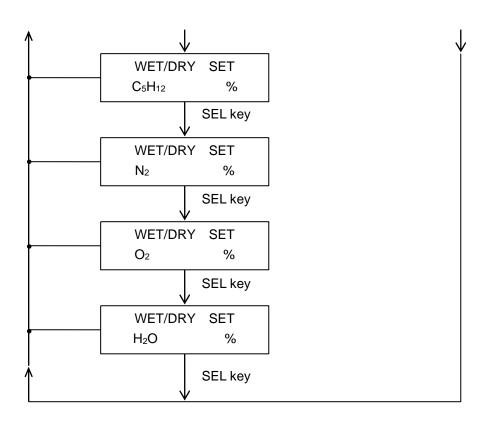
OUT SET (Output signal setting)





Hold operation by settin	g							
Status	HOLD SET setting							
Status	STD	OFF	PHM1	PHM2				
Abnormal occurrence		Hold to previous value 5 seconds						
During calibration Purging	Hold to previous	Not hold	Hold to	Hold to				
Hold input	seconds	value 5	set value	set value				
MFT input	Social	Hold to previous value 5 seconds						

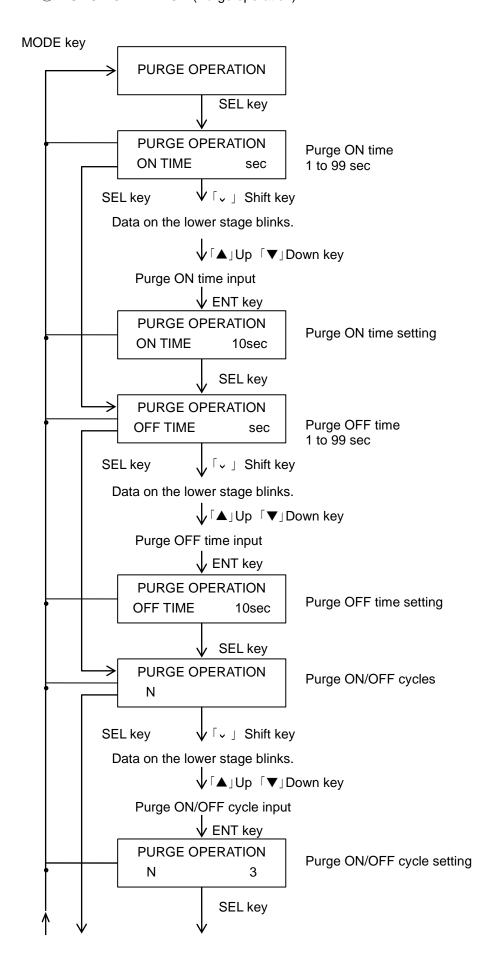


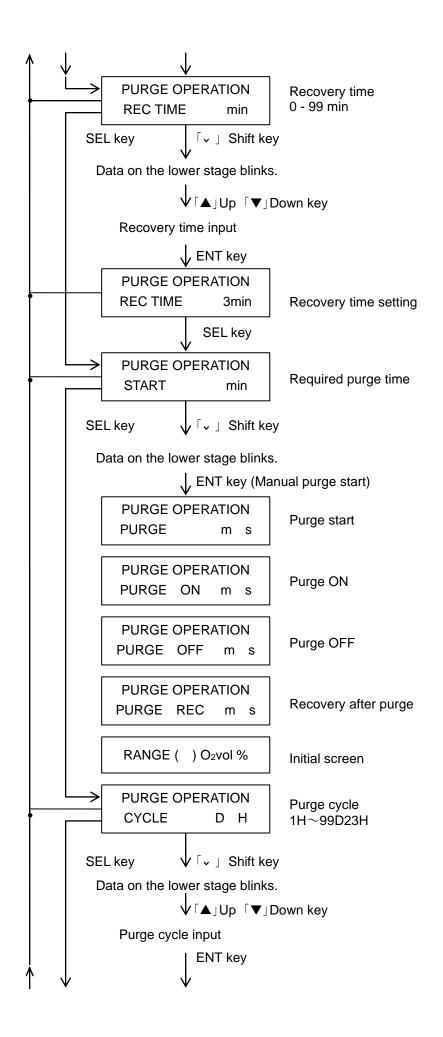


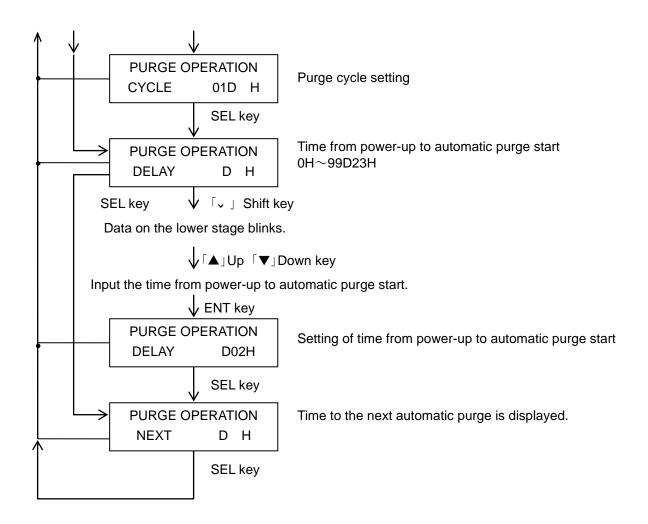
Lower limit alarm value setting

WET / DRY SET (Wet / dry setting)

*1: Input the gas fuel content.


*2: Input the solid and liquid fuel contents.


Press the $\lceil \checkmark \rfloor$ shift key to blink the data.


Press the $\lceil \blacktriangle \rfloor$ up or $\lceil \blacktriangledown \rfloor$ down key to input data.

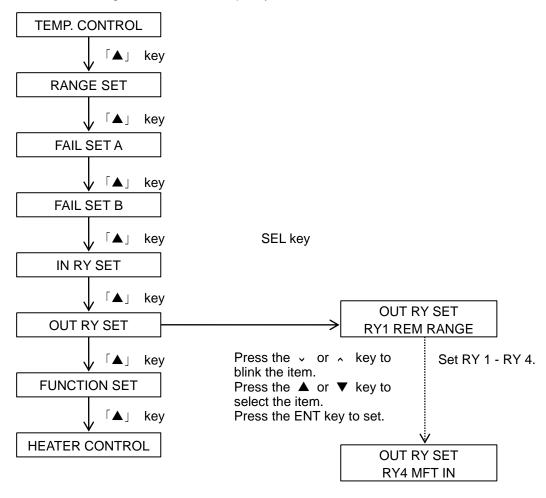
Press the ENT key to set the data.

① PURGE OPERATION (Purge operation)

5-4 User key input value (Set by we according to specifications in delivered product)

No.	Block name	Setting item	Set value	Content
1	DISPLAY SELECT		O ₂ %	LED display
		LOCAL	OFF	Range select field
(a)	DANCE CHANCE	HIGH	(High range)	High range selection
2	RANGE CHANGE	LOW	(Low range)	Low range selection
		Delay Time	0 sec	Primary delay calculation time
		AIR	(Air calib. value)	Air O ₂ concentration
		ZERO	(Zero gas calib. value)	Zero gas concentration
		SPAN	(Span gas calib. value)	Span gas concentration
4	CAL. DATA SET	AIR TIME	5 min	Air calibration time
4	CAL. DATA SET	Z, S TIME	5 min	Zero and span calibration time
		RECTIME	3 min	Recovery time
		CYCLE	30D00H	Calibration cycle
		DELAY	00D07H	Calibration delay
		LINEARIZER	(1, 2, 3)	According to lineareyer No. Inspection data
	SENSOR	Ka	0.35	Currant seusitivity coefficient
6	PARAMETER	IP (N ₂)	0.00	Zero point Ip eurrent
		Km	1.00	-O ₂ sensitivityn correction coefficient
		β	0.42	Butan fuel -O ₂ gain
	OUT SET	ADJUST	0 %	Output signal adjustment
		HOLD SET	OFF	Output signal hold
7		PHM1	0 %	Output setting 1
		PHM2	0 %	Output setting 2
		LIMIT	0 %	Output over range
		MODE	OFF	Alarm selection
8	ALARM SET	HIGH	25 %	O ₂ upper limit
		LOW	0 %	O ₂ lower limit
9	WET/DRY SET	MODE	WET	Wet / dry selection
9	WEI/DIXT OLI	CO ₂ -H ₂ O	All 0%	Dry 1 / Dry 2 data setting
		ON TIME	10 sec	Purge ON time
		OFF TIME	10 sec	Purge OFF time
	DUDGE	N	5	ON / OFF cycles
10	PURGE OPERATION	RECTIME	3 min	Recovery time
		START	All time display	Purge time
		CYCLE	01d00h	Purge cycle
		DELAY	00d02h	Purge delay

Yey operation method, item No.

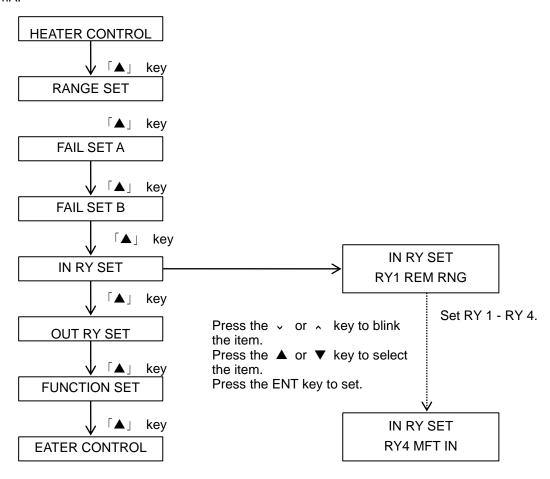

Description in parentheses () in the table is input according to instruction document (drawing, etc.)

5-5 System key input value (Set by we according to specifications in delivered product)

Block name	Setting item	Set value	Content	
	Warm up	3 min	Warm-up time	
	VHS	10.50 V	Heater voltage	
HEATER	RH/RHO	2.700	Target resistant ratio	
CONTROL	Р	100 %	Proportional band	
	I	100 sec	Integration time	
	D	1 sec	Differentiation time	
	H. ZERO			
RANGE SET	H. SPAN	Input the range from	H range setting	
RANGE SET	L. ZERO	drawings, etc.	-15 - 25%	
	L. SPAN			
	Ka H.	0.500	Current sensitivity high	
FAIL SET A	Ka L.	0.100	Current sensitivity low	
FAIL SET A	KM H.	1.30	-O ₂ Current sensitivity high	
	KM L.	0.70	-O ₂ Current sensitivity low	
	Ip N ₂	\pm 0.50 mA	Zero calibration error	
	Ip H.	10.00 mA	Ip Current high	
FAIL SET A	Ip L.	-10.00 mA	Ip Current low	
	Vp H.	2.30 V	Vp Voltage high	
	Vp L.	-2.30 V	Vp Voltage low	
	Vs H.	600 mA	Vs Voltage high	
	Vs L.	100 mA	Vs Voltage low	
FAIL SET B	IH H.	1600 mA	IH Current high	
FAIL SET B	IH L.	500 mA	IH Current low	
	VHS H.	13.00 V	VHS Voltage high	
	VHS L.	5.00 V	VHS Voltage low	
	O ₂ MODE	+O ₂ , -O ₂	O ₂ mode	
	CAL MODE	OFF, MANUAL, SEMIAUTO, AUTO	Calibration mode	
ELINOTION CET	CAL TYPE	A, A/Z, A/S, A/Z/S, S, Z/S	Calibration gas	
FUNCTION SET	PUG MODE	OFF, SEMIAUTO, AUTO	Purge mode	
	MONI SW	Set to OFF (A/D MONITOR)	A / D monitor	
	WARNING	Set to ON	Setting error display	

(1) Contact output (Set by we according to specifications)

Contact outputs RY 1 through RY 5 are provided, among which RY 5 is a "b" contact only for error output (turned on upon an error) and RY 1 through RY 4 are "a" contacts to which the function in the table below can be assigned. The contact capacity is 250 VAC 1A or 30 VDC 1A.


Functions assigned to contact output

Setting	Description			
OFF	This contact is not used.			
RANGE H	Turned on when the high range is selected.			
RANGE L	Turned on when the low range is selected.			
CAL AIR	Turned on when the air gas is supplied during automatic calibration.			
CAL ZERO	Turned on when the zero gas is supplied during automatic calibration.			
CAL SPAN	Turned on when the span gas is supplied during automatic calibration.			
PURGE	Turned on during purging and MFT.			
MAINTE	During temperature rise, during purging, during calibration, during hold signal input, during MFT signal input, during system data setting (when DIP switch S2-1 on the CPU board is turned on)			
ALARM H	The oxygen concentration is higher than the upper limit setting. (Refer to the paragraph for alarm for details.)			
ALARM L	The oxygen concentration is lower than the lower limit setting. (Refer to the paragraph for alarm for details.)			
ALM H&L	ALARM H or ALARM L is turned on.			

Note) Either RANGE H or RANGE L is always turned on.

(2) Contact input (Set by we according to specifications.)

Contact inputs IN 1 through IN 5 are provided, and each of them can be set. The terminal voltage when the contact is open is about 10 to 12 V, and the current when the contact is shorted is about 5 to 6 mA.

Functions assigned to contact input

Setting	Description
OFF	This contact is not used.
REM RNG	Opening this terminal selects the high range and shorting selects the low range in the RANGE CHANGE / LOCAL OFF mode.
OUT HOLD	When this terminal is shorted, the current output is held at the previous value. The 7-segment LED display is not held.
REM CAL	Shorting this terminal in the measurement mode with the CAL MODE set at SEMI AUTO or AUTO starts automatic calibration.
REM PUG	Shorting this terminal with the PUG MODE set at SEMI AUTO or AUTO starts purging.
MFT IN	Shorting this terminal holds the current output and shows "" at the 7-segment LED. Heater control is disabled and the cell error or low temperature error is not detected. Setting the purge relay turns on the input. After the input is reset, the process starts at temperature rise.
RESET	Shorting this terminal restarts the timer for timer calibration and timer purge. The next timer calibration is after the set calibration cycle (CAL, DATA, SET, CYCLE), and the next purge is after the set purge cycle (PURGE, OPERATION, CYCLE).

If the same function is set for two or more terminals, an input to any of the terminals activates the function.

5-6 Gas calibration method

Q

Be sure to perform gas calibration to maintain the measurement accuracy. (About once every month)

Calibration method

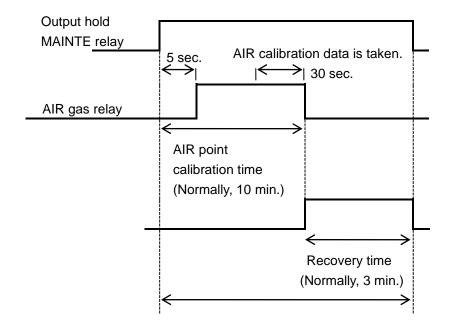
Туре	Calibration method	Description			
MANUAL	Manual calibration	Supply calibration gas and perform calibration key operation manually.			
SEMI AUTO Manual calibration start		Supply of calibration gas and calibration operation are performed automatically by solenoid valves and other components. To start calibration, perform key operation manually or remotely.			
AUTO	Automatic calibration	Supply of calibration gas and calibration operation are automatically performed by solenoid valves and other components. Calibration is started by the internal timer or remote operation.			

(System key input; set by we)

Preliminary contact input assignment is necessary for remote operation (REM, CAL).

Calibration types

Туре	Calibration method	Description
Α	AIR	High range 1 point calibration
A/Z	AIR, ZERO	High range two-point calibration
A/S	AIR, SPAN	One each at high range and low range calibrations or the SPAN point Is used for calibration at -O ₂ side.
A/Z/S	AIR, ZERO, SPAN	High range three-point calibration However, the SPAN point Is matched to the low range. Alternatively, the SPAN point Is used for calibration at -O ₂ side.
S	SPAN	One low range calibrations or used for calibration at -O ₂ side.
Z/S	ZERO, SPAN	Low range two-point calibration

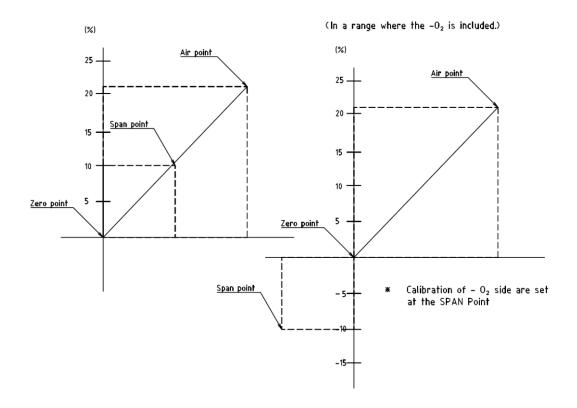

(System key input; set by we)

※ Calibration of -O₂ side Is set at SPAN point.

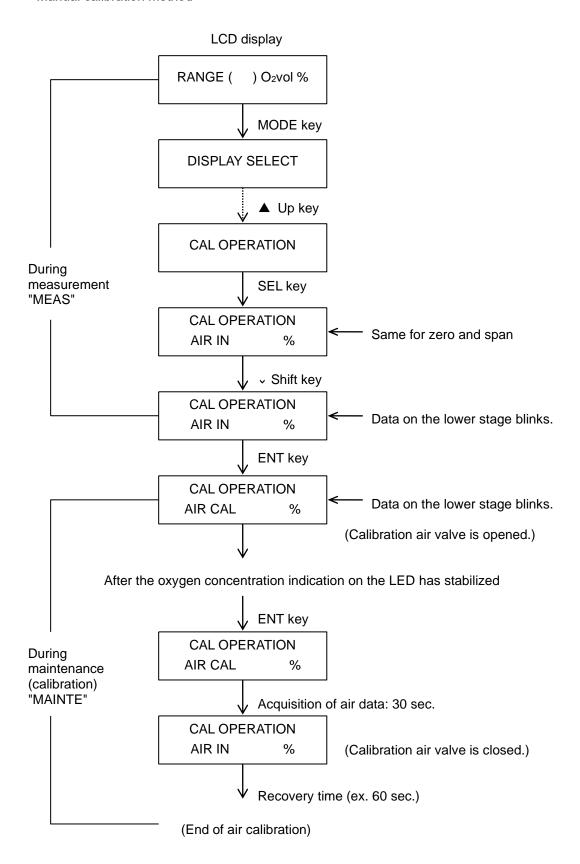
The calibration gas at -O2 side Is used after bubbling through water of CO: 9%, H2: 7%,

CO2: Bal. calibration values become as -8% O2.

· Calibration timing



This time is displayed on the LCD when performing the calibration with key operations.



Calibration curve

Two point calibration with air and zero gas is regular choice but you can select three point calibration with air, zero gas and span gas for more accurate measurement.

· Manual calibration method

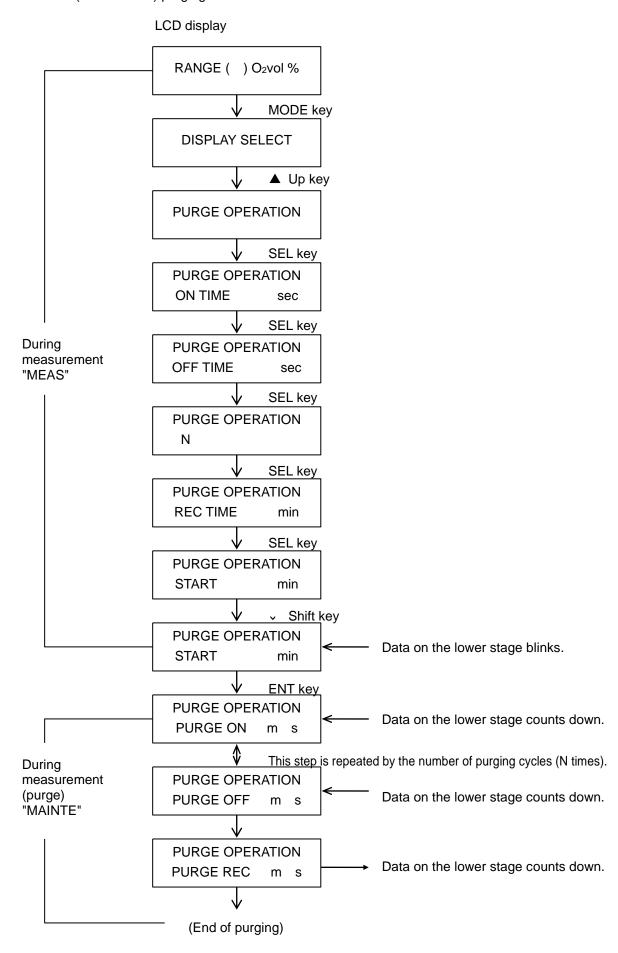
 Semi auto (manual start) calibration method Start automatic calibration manually.

5-7 Purging method

In a purging process, compressed air is blown to inside the probe transmitter. Periodically perform according to necessity.

Purging method

Туре	Purging method	Description
OFF No purging function		
SEMI AUTO	Manual purge start	Perform key operation manually or perform remote operation to output the purge contact.
AUTO	Automatic purge	The purge contact is output by the internal timer or remote operation.


Preliminary contact output assignment is necessary for purging.

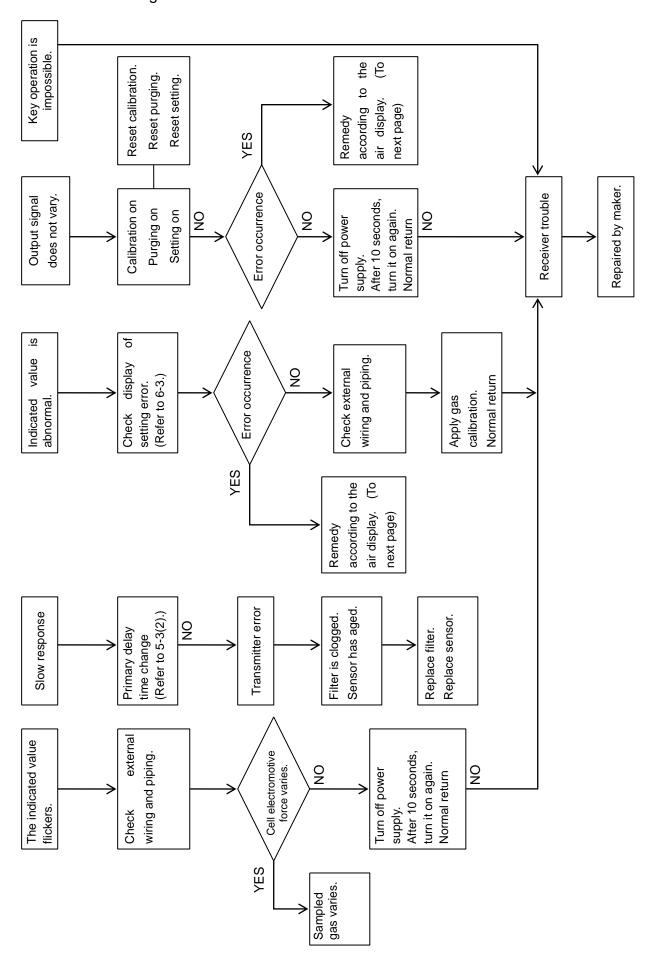
Preliminary contact input assignment is necessary for remote operation (REM PURGE).

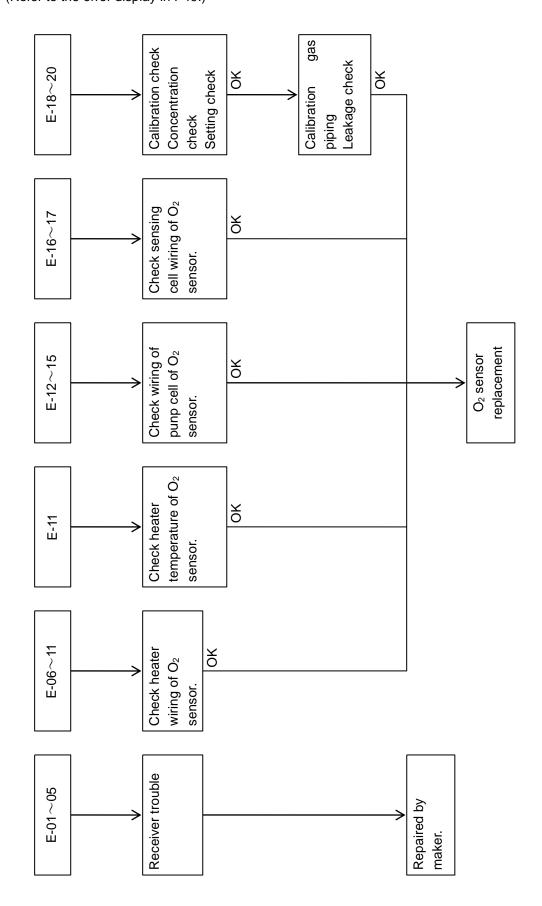
The purging timing is shown in the figure below.

- Output hold, MAINTE relay
- Purge relay
- Purge ON time (normally 10 to 20 sec.)
- 5 sec.
- 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ First time Second time Third time
- No. of purging cycle (normally 3 to 5 times)
- Recovery time
 Purge OFF time (normally 10 to 20 sec.)
- This time is shown on the LCD during purging by key operation.

· Semi auto (manual start) purging method

6. Maintenance




The daily/periodic inspections are important to maintain the proper functions for accurate measurement. After understanding the contents of the item and method, be sure to apply the inspection.

6-1 Daily/ periodic inspection

Coo	Interval	One month
Gas calibration	Method	According to Item 5-6, apply the gas calibration. (According to Item 5-3(4), set the calibration method and so on.)
	Interval	One month
	Method	After the gas calibration is completed, check the drift value against the previously calibrated value. (CAL, DATA MONITOR) Though it is normally +/-2% F.S./month or less, the sensor may be liable to age if the value is exceeded.
Sensor inspection	Interval	1 to 6 months (Check if any abnormality is found during gas calibration.)
	Method	The electromotive force at air point is verified (DISPLAY SELECT) A voltage of about 50mV while in normal operation becomes to those exceeding 100mV when in error. When such is the case, then the sensor is considered started to degrade due to the poisoning gas being absorbed at the sensing cell electrode.
Sensor	Interval	Inferred to be more than 2 years (varies according to the properties of sampled gas)
inspection	Method	When the sensor need be replaced refer to the Instruction Manual for Model TF Transmitter (Refer to para. 6-2 Troubleshooting).

6-2 Troubleshooting

6-3 Display of setting error

LCD (lower step) display	Description
(01) AIR ZERO ?	Air calibration gas is excessively near zero calibration gas.
(02) AIR SPAN ?	Air calibration gas is excessively near span calibration gas.
(03) ZERO SPAN ?	Zero calibration gas is excessively near span calibration gas.
(04) SPAN <0?	Concentration of SPAN calibration Is minus at +O ₂ mode.
(05) CAL CYCLE ?	The frequency of automatic calibration is shorter than calibration time.
(06) ALARM H&L ?	At the alarm, the width is excessively narrow or H is smaller than L.
(07) ALARM H<0?	Alarm H Is minus In +O ₂ mode.
(08) ALARM L<0?	Alarm L Is minus In +O ₂ mode.
(09) DRY1>100% ?	Sum of the gas fuel composition exceeded 100%.
(10) DRY2>100% ?	Sum of the gas liquid, soiled fuel composition exceeded 100%.
(11) PURGE CYCLE ?	The period Is shorter than the purge time In automatic purge.
(12) RANG H ZERO ?	Difference between ZERO and SPAN of H range Is less than 5%.
(13) RANG L ZERO ?	Difference between ZERO and SPAN of L range Is less than 5%.
(14) RANGE L>H ?	L range Is larger than H range.
(15) RANGE HZ<0?	H range ZERO Is minus In +O ₂ mode.
(16) RANGE HS<0?	H range SPAN Is minus In +O ₂ mode.
(17) RANGE LZ<0?	L range ZERO Is minus In +O ₂ mode.
(18) RANGE LS<0?	Span relay Is not set during automatic calibration.
(19) Ka H&1?	Difference Is less than 0.1.
(20) Km H&L?	Difference Is less than 0.1.
(21) Vs H&L?	Difference Is less than 0.1.
(22) IH H&L?	Difference Is less than 100mV.
(23) VH H&L?	Difference Is less than 1V.
(24) No AIR RY ?	AIR relay is not set during automatic calibration.
(25) No ZERO RY ?	ZERO relay is not set during automatic calibration.
(26) No SPAN RY ?	SPAN relay is not set during automatic calibration.
(27) No PURGE RY ?	Purge relay is not set during automatic purging.

6-4 Error display

If any error occurs, the error number will be displayed on the 7-segment LED to display the cause of the error. At this time, the function to calculate the concentration is stopped for interruption. During heater control, it is automatically continued or stopped depending on the content of the error.

LED	LCD	Description	Resetting	Operation
E-01		Sum error does not match.	Turn on the power again.	Measurement stop
E-02		RAM operation error	Turn on the power again.	Measurement stop
E-03	EEROM ERROR (xx)	EEROM operation error	CLR-ENT	Measurement stop
E-04	LCD ERROR	LCD operation error	CLR-ENT	Measurement stop
E-05	A/D ERROR	A/D converter error	CLR-ENT	Measurement stop
E-06	HEATER Volt (HI)	Heater voltage Is too high	CLR-ENT	Measurement stop
E-07	HEATER Volt (LO)	Heater voltage Is too high	CLR-ENT	Measurement stop
E-08	HEATER curr (HI)	Heater current Is excessive	CLR-ENT	Measurement stop
E-09	HEATER curr (LO)	Heater current Is Insufficient	CLR-ENT	Measurement stop
E-10	HEATER (CABLE Ω)	Heater wire resistance too high	CLR-ENT	Measurement stop
E-11	RH/RHO ERROR	Resistance ratio Is too high	CLR-ENT	Measurement stop
E-12	IP (HIGH)	IP current Is too large	CLR-ENT	Temperature control continuation
E-13	IP (LOW)	IP current Is too small	CLR-ENT	Temperature control continuation
E-14	Vp (HIGH)	Pumping cell voltage Is too high	CLR-ENT	Temperature control continuation
E-15	Vp (LOW)	Pumping cell voltage Is too low	CLR-ENT	Temperature control continuation
E-16	Vs (HIGH)	Sensing cell voltage Is too high	CLR-ENT	Temperature control continuation
E-17	Vs (LOW)	Sensing cell voltage Is too low	CLR-ENT	Temperature control continuation
E-18	CAL AIR FAILED	Failure of air calibration	CLR-ENT	Temperature control continuation
E-19	CAL ZERO FAILED	Failure of zero calibration	CLR-ENT	Temperature control continuation
E-20	CAL SPAN FAILED	Failure of span calibration	CLR-ENT	Temperature control continuation

E-01 and E-02 do not blink in the LED display. Others blink in the 7-segment LED displays. * For EEROM error, the error channel No. is displayed on LCD. (Position of xx in the list)

^{*} Temperature control continuation: Oxygen concentration calculation is stopped but heater control is continued.

^{*} Measurement stop: Oxygen concentration calculation and heater control are stopped.

LED	Reference					
E-05	Converted ZERO Is less than 12,500 or larger than 25,000					
E-06	When heater voltage (VH) Increased higher than 13V.					
E-07	When heater voltage (VH) Increased higher than 5V.					
E-08	When heater current (IH) Increased higher than 1600mA.					
E-09	When heater current (IH) Increased lower than 500mA.					
E-10	Heater voltage Is smaller than (heater PWM value/800)					
E-11	Heater resisting ratio Is more than 5 or less than 2 (detected from 75 sec. After started temperature)					
E-12	When Ip current Is larger than 10mA.					
E-13	When Ip current Is less than -10mA.					
E-14	When Vp voltage Is higher than 2.3V.					
E-15	When Vp voltage Is less than -2.3V.					
E-16	When Vs voltage Is higher than 600mV.					
E-17	When Vp voltage Is less than 100mV.					
E-18	When current sensitivity deviated from 0.1 to 0.5 as a result calculated Ka.					
E-19	When Ip (N2) deviated ± 0.5 mA.					
E-20	When minus current sensitivity deviated from 0.7 to 1.3 as a result calculated km.					

E-05 through E-07 Is not recognized as an error unless it continues for 1 second (4 times).

^{*} Mark Indicates than the temperature raising 75 seconds may be adjusted according to the time.

6-5 DTF – 101 Malfunction Displays and Operations

	Displays and Operations Output								
			LED Display	LCD Display	Relay	Output Signal	Release Method	Analyzer Operation	Descriptions
Mal	Malfunctions				RY5				
la	Powe	er OFF	-	-	ON	0mA	-	Stop	
E	Powe	er ON (Warming-up)	-	WARM-UP	OFF	4mA	-	Warm-up	Normally the warm-up time is 3 minutes.
ž	Powe	er ON (Measuring)	Measured value	RANGE 02 vol %	OFF	Measured value		Measurement	
la ,		er lost	-	-	ON	0mA	Power reapplied	Stop	
Jr.		power voltage (-40%)	-	WARM-UP	ON	4mA	Power source voltage corrected	Warm-up	Not recover even becomes to WARM-UP warm condition at about -40%
Abnormal	High	power voltage (+20%)	Measured value	RANGE 02 vol %	OFF	4mA	Power source voltage corrected	Measurement	Necessary correct at ± 10% of the reference voltage
⋖	L.,								
	_	Vs+	E-13/16/17	Vs/Ip (HIGH/LOW)	ON	4mA	CLR-ENT after repaired	Calculation stop	Blinks alternatively between E-13/E-16/E-17
	wire	Vs-	Measured value	RANGE 02 vol %		Measured value	Repair	Measurement	Measurement decreased (becomes to 0% 02/4mA within a few minutes)
		Ip+	E-15/17	Vs/Vp (HIGH/LOW)	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-15/E-17
	lead	Ip-	E-14/17	Vs/Vp (HIGH/LOW)	ON	4mA	CLR-ENT after repaired	Calculation stop	Blinks alternatively between E-14/E-17
	eu	H+	E-07/09/10/11	HEATER Volt (LOW) etc.	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-07/E-09/E-10/E-11 (start from warm-up when entered CLR-ENT)
	Broken	H-	E-07/09/10/11	HEATER Volt (LOW) etc.	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-07/E-09/E-10/E-11 (start from warm-up when entered CLR-ENT)
	m	S+	E-07/10/11	HEATER Volt (LOW) etc.	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-07/E-10/E-11 (start from warm-up when entered CLR-ENT)
Circuit	\vdash	S-	E-11	RH/RHO ERROR	ON	4mA	CLR-ENT after repaired		E-11 blinks
<u></u>		Vs+/Vs-	E-17	Vs (LOW)	ON	4mA	CLR-ENT after repaired		E-17 blinks
Ö		Vs+/Ip+	Measured value	RANGE 02 vol %		Measured value	Repair		Higher value than true is measured temporarily
I ta		Vs+/Ip-	E-12/17	Vs/Ip (LOW/HIGH)	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-12/E-17
드		Vs+/h+ (s+)	E-16/17	Vs (HIGH/LOW)	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-16/E-17 (sensor is replaced when E-17 comes to OFF after entered CLR-ENT)
Abnormal Input	wire	Vs+/H- (S-)	E-12/17	Vs/Ip (LOW/HIGH)	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-12/E-17
l o		Vs-/Ip+	E-17	Vs (LOW)	ON	4mA	CLR-ENT after repaired	Calculation interrupted	
5	lead	Vs-/Ip-	Measured value	RANGE 02 vol %		Measured value	Repair	Measurement	Measurement not changed
`		Vs-/H+ (S+)	E-07/08/10/11	HEATER Volt (LOW) etc.	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-07/E-08/E-10/E-11 (start from warm-up when entered CLR-ENT)
	rte	Vs-/H- (S-)	Measured value	RANGE 02 vol %	OFF	Measured value	Repair		Measurement not changed
	Shorted	Ip+/Ip-	E-17	Vs (LOW)	ON	4mA	CLR-ENT after repaired	Calculation stop	E-17 blinks
	"	Ip+/H+ (S+)	E-14/16	Vs/Vp (HIGH)	ON	4mA	CLR-ENT after repaired	Calculation stop	Blinks alternatively between E-14/E-16
		Ip+/H- (S-)	E-17	Vs (LOW)	ON	4mA	CLR-ENT after repaired		E-17 blinks
		Ip-/H+ (S+)		HEATER Volt (LOW) etc.	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-07/E-08/E-10/E-11 (start from warm-up when entered CLR-ENT)
		Ip-/H- (S-)	Measured value	RANGE 02 vol %		Measured value	Repair	Measurement	Measurement not changed
-		H+ (S+) /H- (S-)	E-07/08/10/11	HEATER Volt (LOW) etc.	ON	4mA	CLR-ENT after repaired		Blinks alternatively between E-07/E-08/E-10/E-11 (start from warm-up when entered CLR-ENT)
	lo C	Broken output wiring	Measured value	RANGE 02 vol %	OFF	0mA	Repair	Measurement	
	ġ.	Shorted output wiring	Measured value	RANGE 02 vol %	OFF	0mA	Repair	Measurement	
۱	output								
Output Circuit	벌								
5	۱ کا								
1 ਤ	l e								
-	4-20mA								
	- i	DV1 6 time - time - time	Management	RANGE 02 vol %	OFF	Management	Doot woods and	M	Health and the group Harris Large Large Haller Large Colling in 17 Oction 17 Oction 17
Abnormal	15	RY1 function stopped	Measured value			Measured value	Part replaced		Unable output the range H, range L, maintenance, alarm H, alarm L, purge, Calibration 17, Calibration Zero, Calibration span
l e		RY2 function stopped	Measured value	RANGE 02 vol %		Measured value	Part replaced		Unable output the range H, range L, maintenance, alarm H, alarm L, purge, Calibration 17, Calibration Zero, Calibration span
ام ا	relay	RY3 function stopped	Measured value	RANGE 02 vol %	OFF OFF	Measured value Measured value	Part replaced	Measurement Measurement	Unable output the range H, range L, maintenance, alarm H, alarm L, purge, Calibration 17, Calibration Zero, Calibration span
⋖		RY4 function stopped	Measured value Measured value	RANGE 02 vol % RANGE 02 vol %	OFF	Measured value Measured value	Part replaced		Unable output the range H, range L, maintenance, alarm H, alarm L, purge, Calibration 17, Calibration Zero, Calibration span
	nd:	RY5 function stopped	wieasured value	RANGE UZ VOI %	UFF	weasured value	Part replaced	Measurement	Unable output the instrument malfunction, power off warning
	Output								
 -		/13 check	E-01	_	ON		Power reapplied	Calculation stop	O2 concentration calculation and heater control stopped (matching error between EEPROM and RAM)
GPU		function stopped	E-02	_	ON		Power reapplied Power reapplied		O2 concentration calculation and heater control stopped (RAM malfunctioning)
1 2	_	function stopped	E-03	EEPROM ERROR	ON		CLR-ENT	Calculation stop	O2 concentration calculation and heater control stopped (RAM malfunctioning)
ı ı		display	E-03	LCD ERROR	ON		CLR-ENT		O2 concentration calculation and heater control stopped (ECD malfunctioning)
ě		A/D)	E-05	A/D ERROR	ON		CLR-ENT CLR-ENT		O2 concentration calculation and heater control stopped (A/D converter malfunctioning)
Ab _I		(A/D)	E-05	A/D ERROR	ON		CLR-ENT		O2 concentration calculation and heater control stopped (A/D converter manunctioning)
	1 1010 (A/ B)		L 00	A/D LINION	ON		OLIV LIVI	Calculation stop	To a convention of continuent and nearest control stupped (A/ D converter manuscroming)

The contents of this manual are subject to change without notice for improvement.

For inquiries regarding product handling, please contact us or our distributors. Inquiry form URL: https://www.energys.co.jp/english/inq/all.php

ENERGY SUPPORT CORPORATION

1, Aza Kamikobarii, Inuyama, Aichi 484-8505 Japan

